L'étroite complémentarité entre la vision et le toucher:

 Études psychophysiques et cérébrales chez la personne voyante et non-voyante

■UCLouvain
[Olivier Collignon]

Hes soll vails
$\Sigma \pi \approx \&$

"Low-level"

Visuo-Tactile integration

Simple detection task: Uni- vs Multi-sensory Integration

Stimulation Conditions
$\left.\begin{array}{rl}\text { Unimodal } & \left\{\begin{array}{l}\text { Single Visual = V1, V2, V3, V4 } \\ \text { Single Tactile }=\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4\end{array}\right.\end{array}\right\} \begin{aligned} & \text { Within-modal } \\ & \left\{\begin{array}{l}\text { Double Visual (Aligned) }=\mathrm{V} 1 / \mathrm{V} 2, \mathrm{~V} 3 / \mathrm{V} 4 \\ \text { Double Visual (Misaligned) }=\mathrm{V} 1 / \mathrm{V} 3, \mathrm{~V} 2 / \mathrm{V} 4 \\ \text { Double Tactile (Aligned) }=\mathrm{T} 1 / \mathrm{T} 2, \mathrm{~T} 3 / \mathrm{T} 4 \\ \text { Double Tactile (Misaligned) }=\mathrm{T} 1 / \mathrm{T} 3, \mathrm{~T} 2 / \mathrm{T} 4\end{array}\right. \\ & \text { Cross-modal }\left\{\begin{array}{l}\text { Visuo-Tactile (Aligned) }=\mathrm{V} 1 / \mathrm{T} 2, \mathrm{~V} 2 / \mathrm{T} 1, \mathrm{~V} 3 / \mathrm{T} 4, \mathrm{~V} 4 \mathrm{~T} 3 \\ \text { Visuo-Tactile (Misaligned) }=\mathrm{V} 1 / \mathrm{T} 3, \mathrm{~V} 2 / \mathrm{T} 4, \mathrm{~V} 3 / \mathrm{T} 1, \mathrm{~V} 4 / \mathrm{T} 2\end{array}\right.\end{aligned}$

Simple detection task: Uni- vs Multi-sensory Integration

Simple detection task: Uni- vs Multi-sensory Integration

Simple detection task: Uni- vs Multi-sensory Integration

Redundancy Gain

Redundancy Gain

Girard et al. EBR 13

Does multisensory spatial congruence plays a role?

Condition 1: respond to all stimuli

Condition 2: respond to right stimuli only

Girard et al. EBR 10
(A) Mean Reaction Times

(A) Mean Reaction Times

(B)

(A) Mean Reaction Times

(B)

(B)

Girard et al. EBR 10

LEFT H.

RIGHT H.
(a)

LEFT H.

RIGHT H.
(a)

LEFT H.

RIGHT H.

The shared location in external space determines crossmodal spatial effects

The shared location in external space determines crossmodal spatial effects

Experiment 2: Hand Occluded

C. Left fusiform/lingual gyrus

D. Right fusiform/lingual gyrus

Vision and Touch at the SAME external location

Automatic remapping of touch in external space?

Tactile Temporal Order Judgement Task

Tactile Temporal Order Judgement Task

B

Crossing Hands

Crossing Sticks

Why?

> Remap somatosensory coordinate onto external coordinate for VISION

External remapping of touch in the blind

Neural correlates of the external remapping of touch in the blind

Neural correlates of the external remapping of touch in the blind
a Performance in the TOJ task

Neural correlates of the external remapping of touch in the blind
 b Sighted [Crossed > Uncrossed]

Neural correlates of the external remapping of touch in the blind

c Sighted $>$ Blind [Crossed $>$ Uncrossed]

Neural correlates of the external remapping of touch in the blind
 b Sighted [Crossed > Uncrossed]
a Performance in the TOJ task

C Sighted $>$ Blind [Crossed $>$ Uncrossed]

d PPI: Blind> Sighted [Crossed > Uncrossed]

"High-level" Visuo-Tactile integration

 [Body Perception]
Rubber Hand Illusion

Out of Body Experiment

OUT-OF-BODY EXPERIENCE

1. A subject wears goggles showing the view from a camera behind him. An experimenter prods the subject's chest at the same time

2. The subject sees the hand prodding towards the camera as he feels his chest being prodded. He also sees his body from behind. This creates a vivid sense that his real body is floating behind the one he sees.

Out of Body Experiment

Out of Body Experiment

"High-level" Visuo-Tactile integration

[Shape Perception]

Humans integrate visual and haptic

information in a statistically

 optimal fashion
Marc 0. Ernst* \& Martin S. Banks

Vision Science Program/School of Optometry, University of California, Berkeley 94720-2020, USA

Humans integrate visual and haptic information in a statistically optimal fashion

Marc O. Ernst* \& Martin S. Banks

Vision Science Program/School of Optometry, University of California, Berkeley 94720-2020, USA

Convergence of visual and tactile object recognition

Is the lateral occipito-temporal cortex encoding supramodal shape

or

Semantic representation of objects

or

Visual imagery

Supramodal shape representation in the human brain?

Supramodal shape representation in the human brain?

A

$$
\text { All (} \mathrm{N}=48 \text {) }
$$

LOtv Peak Coordinates

- Amedi et al., 2001
- Amedi et al., 2002
- Tal \& Amedi, 2009

B $\quad E B(N=16)$

C
$S C(N=16)$

Supramodal shape representation in the human brain?

- Not only distinguish (MVPA) but look at the similarity between brain and model space

- Not only distinguish (MVPA) but look at the similarity between brain and model space

- Not only distinguish (MVPA) but look at the similarity between brain and model space

- Not only distinguish (MVPA) but look at the similarity between brain and model space

- Not only distinguish (MVPA) but look at the similarity between brain and model space

- Not only distinguish (MVPA) but look at the similarity between brain and model space

- Not only distinguish (MVPA) but look at the similarity between brain and model space

- Not only distinguish (MVPA) but look at the similarity between brain and model space

- Not only distinguish (MVPA) but look at the similarity between brain and model space

Neural Dissimilarity Matrix

- Not only distinguish (MVPA) but look at the similarity between brain and model space

